DOD
Search
Discussions
Biomedical Jobmarket
News
DOD Alert
Edit DOD
 
ACCOUNT
Login
Register
Forgotten Password?
 
 
{alpha}L integrin I domain cyclic peptide antagonist selectively inhibits T cell adhesion to pancreatic islet microvascular endothelium
 
Diabetes OD > Reversal/Prevention of Diabetes > T1DM > Re-establishing Tolerance > Modifying Immunity > Recent Onset > Site-Specific Intervention > Journal Article

(Journal Article): {alpha}L integrin I domain cyclic peptide antagonist selectively inhibits T cell adhesion to pancreatic islet microvascular endothelium
 
Huang M, Matthews K, Siahaan TJ, Kevil CG (Department of Pathology, LSU Health Sciences Center, Shreveport, Louisiana, USA, ckevil@lsuhsc.edu )
 
IN: Am J Physiol Gastrointest Liver Physiol 2004; Epub(19)
Impact Factor(s) of Am J Physiol Gastrointest Liver Physiol: 3.479 (2004), 3.421 (2003), 3.66 (2001)

Fulltext:    HTML  PDF

ABSTRACT: Insulitis is a hallmark feature of autoimmune diabetes that ultimately results in islet beta cell destruction. We examined integrin requirements and specific inhibition of integrin structure in T cell and monocyte adhesion to pancreatic islet endothelium. Examination of cell surface integrin expression on WEHI 7.1 T cells revealed prominent expression of beta2, beta1, alphaL, and low expression of alphaM integrins; while WEHI 274.1 monocytes showed significant staining for beta2, beta1, alphaM and no expression of alphaL molecules. Unstimulated islet endothelium showed constitutive levels of ICAM-1 counter ligand expression with minimal VCAM-1 expression; however, TNF-alpha stimulation increased cell surface density of both molecules. TNF-alpha increased T cell and monocyte rolling and adhesion under hydrodynamic flow conditions. Administration of a cyclic peptide competitor for the alphaL I domain binding sites (cLAB.L, cyclo1,12-PenITDGEATDSGC) blocked T cell adhesion without inhibiting monocyte adhesion. Examination of T cell rolling revealed that cLAB.L treatment increased the average rolling velocity on activated endothelium and significantly decreased the fraction of T cells rolling at </= 50 micro m/sec suggesting that cLAB.L treatment interferes with signal activation events required for the conversion of T cell rolling to firm adhesion. These data demonstrate for the first time that cyclic peptide antagonists against alphaL I domain attenuate T cell recruitment to islet endothelium.

REFERENCES:

  1. Anderson M and Siahaan T. Targeting ICAM-1/LFA-1 interaction for controlling autoimmune diseases: designing peptide and small molecule inhibitors. Peptides 2003. 24:487-501.
  2. Bertry-Coussot L, Lucas B, Danel C, Halbwachs-Mecarelli L, Bach JF, Chatenoud L, and Lemarchand P. Long-term reversal of established autoimmunity upon transient blockade of the LFA-1/intercellular adhesion molecule-1 pathway. J Immunol 2002. 168:3641-3648.
  3. Dunne JL, Ballantyne CM, Beaudet AL, and Ley K. Control of leukocyte rolling velocity in TNF-alpha induced inflammation by LFA-1 and Mac-1. Blood 2002 99:336-341.
  4. Durinovic-Bello I. Autoimmune diabetes: the role of T cells, MHC molecules and autoantigens. Autoimmunity 1998. 27:159-177.
  5. Edwards CP, Fisher KL, Presta LG, and Bodary SC. Mapping the intercellular adhesion molecule-1 and -2 bindin site on the inserted domain of leukocyte function-associated antigen-1. J Biol Chem 1998. 273:28937-28944.
  6. Eisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 1986. 314:1360-1368.
  7. Fabien N, Bergerot I, Orgiazzi J, and Thivolet C. Lymphocyte function associated antigen-1, integrin alpha 4, and L-selectin mediate T-cell homing to the pancreas in the model of adoptive transfer of diabetes in NOD mice. Diabetes 1996. 45:1181-1186.
  8. Faveeuw C, Gagnerault MC, and Lepault F. Expression of homing and adhesion molecules in infiltrated islets of Langerhans and salivary glands of nonobese diabetic mice. J Immunol 1994. 152:5969-5978.
  9. Griggs DW, Schmidt CM, and Carron CP. Characteristics of cation binding to the I domains of LFA-1 and MAC-1. J Biol Chem 1998. 273:22113-22119.
  10. Hanninen A, Salmi M, Simell O, and Jalkanen S. Endothelial cellbinding properties of lymphocytes infiltrated into human diabetic pancreas. Implications for pathogenesis of IDDM. Diabetes 1993. 42:1656-1662.
  11. Harris ES, McIntyre TM, Prescott SM, and Zimmerman GA. The leukocyte integrins. J Biol Chem 2000. 275:23409-23412.
  12. Henderson RB, Lim LH, Tessier PA, Gavins FN, Mathies M, Perretti M, and Hogg N. The use of lymphocyte function associated antigen (LFA)-1-deficient mice to determine the role of LFA-1, Mac-1, and alpha 4 integrin in the inflammatory response of neutrophils. J Exp Med 2001. 194:219-226.
  13. Herold K, Burton J, Francois F, Poumian-Ruiz E, Glandt M, and Bluestone J. Activation of human T cells by FcR nonbinding anti-CD3 mAb, hOKT3gamma1 (Ala-Ala). J Clin Invest 2003. 111:409-418.
  14. Herold K, Hagopian W, Auger J, Poumian-Ruiz E, Taylor L, Donaldson D, Gitelman S, Harlan D, Xu D, Zivin R, and Bluestone J. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 2002. 346:1692-1698.
  15. Hutchings P, Rosen H, O'Reilly L, Simpson E, Gordon S, and Cooke A. Transfer of diabetes in mice prevented by blockade of adhesion-promoting receptor on macrophages. Nature 1990. 348:639-642.
  16. Imagawa A, Hanafusa T, Tamura S, Moriwaki M, Itoh N, Yamamoto K, Iwahashi H, Yamagata K, Waguri M, Nanmo T, Uno S, Nakajima H, Namba M, Kawata S, Miyagawa JI, and Matsuzawa Y. Pancreatic biopsy as a procedure for detecting in situ autoimmune phenomena in type 1 diabetes: close correlation between serological markers and histological evidence of cellular autoimmunity. Diabetes 2001. 50:1269-1273.
  17. Irawaty W, Kay T, and Thomas H. Transmembrane TNF and IFNgamma induce caspase independent death of primary mouse pancreatic beta cells. Autoimmunity 2002. 35:369-375.
  18. Kevil C and Bullard D. Roles of leukocyte/endothelial cell adhesion molecules in the pathogenesis of vasculitis. American Journal of Medicine 1999. 106:677-687.
  19. Kevil CG. Endothelial cell activation in inflammation: lessons from mutant mouse models. Pathophysiology In Press, 2003.
  20. Kevil CG and Bullard DC. Cell adhesion molecules in the rheumatic diseases. In: Arthritis and allied conditions, edited by Koopman W. Philadelphia: Lippincott Williams & Wilkins, 2001, p. 478-489.
  21. Kevil CG, Chidlow JH, Bullard DC, and Kucik DF. High-temporalresolution analysis demonstrates that ICAM-1 stabilizes WEHI 274.1 monocytic cell rolling on endothelium. Am J Physiol Cell Physiol 2003. 285:C112-118.
  22. Kim M, Carman CV, and Springer TA. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 2003. 301:1720-1725.
  23. Knorr R and Dustin ML. The lymphocyte function associated antigen 1 I domain is a transient binding module for intercellular adhesion molecule-1 (ICAM-1) and ICAM-3 in hydrodynamic flow. J Exp Med 1997. 186:719-730.
  24. Kucik DF, Dustin ML, Miller JM, and Brown EJ. Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. J Clin Invest 1996. 97:2139-2144.
  25. Lamhamedi-Cherradi S, Zheng S, Tisch R, and Chen Y. Critical roles of tumor necrosis factor related apoptosis-inducing ligand in type 1 diabetes. Diabetes 2003. 52:2274-2278.
  26. Lampeter ER, Kishimoto TK, Rothlein R, Mainolfi EA, Bertrams J, Kolb H, and Martin S. Elevated levels of circulating adhesion molecules in IDDM patients and in subjects at risk for IDDM. Diabetes 1992. 41:1668-1671.
  27. Lee JO, Rieu P, Arnaout MA, and Liddingtone R. Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell 1995. 80:631-638.
  28. Martin S. Soluble adhesion molecules in type 1 diabetes mellitus. Horm Metab Res 1997. 29:639-642.
  29. Martin S, Hibino T, Faust A, Kleemann R, and Kolb H. Differential expression of ICAM-1 and LFA-1 versus L-selectin and VCAM-1 in autoimmune insulitis of NOD mice and association with both Th1- and Th2-type infiltrates. J Autoimmun 1996. 9:637-643.
  30. Martin S, van den Engel NK, Vinke A, Heidenthal E, Schulte B, and Kolb H. Dominant role of intercellular adhesion molecule-1 in the pathogenesis of autoimmune diabetes in non-obese diabetic mice. J Autoimmun 2001. 17:109-117.
  31. Michie SA, Sytwu HK, McDevitt JO, and Yang XD. The roles of alpha 4-integrins in the development of insulin-dependent diabetes mellitus. Curr Top Microbiol Immunol 1998. 231:65-83.
  32. Mikulowska-Mennis A, Xu B, Berberian JM, and Michie SA. Lymphocyte migration to inflamed lacrimal glands is mediated by vascular cell adhesion molecule-1/alpha(4)beta(1) integrin, peripheral node addressin/lselectin, and lymphocyte function-associated antigen-1 adhesion pathways. Am J Pathol 2001. 159:671-681.
  33. Mysliwiec J, Kretowski A, Kinalski M, and Kinalska I. CD11a expression and soluble ICAM-1 levels in peripheral blood in high-risk and overt type 1 diabetes subjects. Immunol Lett 1999. 70:69-72.
  34. Ni N, Kevil CG, Bullard DC, and Kucik DF. Avidity modulation activates adhesion under flow and requires cooperativity among adhesion receptors. Biophys J 2003. 85:4122-4133.
  35. Notkins AL and Lernmark A. Autoimmune type 1 diabetes: resolved and unresolved issues. J Clin Invest 2001. 108:1247-1252.
  36. Rabinovitch A. Autoimmune Diabetes Mellitus. Science and Medicine, 2000, p. 18-27.
  37. Roep BO, Heidenthal E, de Vries RR, Kolb H, and Martin S. Soluble forms of intercellular adhesion molecule-1 in insulin-dependent diabetes mellitus. Lancet 1994. 343:1590-1593.
  38. Salas A, Shimaoka M, Chen S, Carman CV, and Springer T. Transition from rolling to firm adhesion is regulated by the conformation of the I domain of the integrin lympocyte function associated antigen-1. J Biol Chem 2002. 277:50255-50262.
  39. Shimaoka M and Springer TA. Therapeutic antagonists and conformational regulation of integrin function. Nat Rev Drug Discov 2003. 2:703-716.
  40. Shimaoka M, Xiao T, Liu JH, Yang Y, Dong Y, Jun CD, McCormack A, Zhang R, Joachimiak A, Takagi J, Wang JH, and Springer TA. Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 2003. 112:99-111.
  41. Sigal A, Bleijs DA, Grabovsky V, Vliet SJv, Dwir O, Figdor CG, Kooyk Yv, and Alon R. The LFA-1 integrin supports rolling adhesions on ICAM-1 under physiological shear flow in a permissive cellular environment. J Immunol 2000. 165:442-452.
  42. Springer TA. Predicted and experimental structures of integrins and beta propellers. Curr Opin Struct Biol 2002. 12:802-813.
  43. Suri A and Katz JD. Dissecting the role of CD4+ T cells in autoimmune diabetes through the use of TCR transgenic mice. Immunol Rev 1999. 169:55-65.
  44. Takagi J and Springer TA. Integrin activation and structural rearrangement. Immunol Rev 2002. 186:141-163.
  45. Thomas HE and Kay TW. Beta cell destruction in the development of autoimmune diabetes in the non-obese diabetic mouse. Diabetes Metab Res Rev 2000. 16:251-261.
  46. Tibbetts S, Jois S, Siahaan T, Benedict S, and Chan M. Linear and cyclic LFA-1 and ICAM-1 peptides inhibit cell adhesion and function. Peptides 2001. 21:1161-1167.
  47. Toyoda H and Formby B. Contribution of T cells to the development of autoimmune diabetes in the NOD mouse model. Bioessays 1998. 20:750-757.
  48. Woska JR, Last-Barney K, Rothlein R, Kroe RR, Reilly PL, Jeanfavre DD, Mainofli EA, Kelly TA, Caviness GO, Fogal SE, Panzenbeck MJ, Kishimoto TK, and Giblin PA. Small molecule LFA-1 antagonists compete with an anti-LFA-1 monoclonal antibody for binding to the CD11a I domain: development of a flow-cytometry-based receptor occupancy assay. J Immunol Methods 2003. 277:101-115.
  49. Wu A, Hua H, Munson S, and McDevitt H. Tumor necrosis factor-alpha regulation of CD4+CD25+ T cell levels in NOD mice. Proc Natl Acad Sci U S A 2002. 99:12287-12292.
  50. Xu C, Yusuf-Makagiansar H, Hu Y, Jois S, and Siahaan T. Structural and ICAM-1 docking properties of a cyclic peptide from the I domain of LFA-1: an inhibitor of ICAM-1/LFA-1 mediated T cell adhesion. J Biolmol Struct Dyn 2002. 19:789-799.
  51. Yalamanchili P, Lu C, Oxvig C, and Springer TA. Folding and function of I domain deleted Mac-1 and lymphocyte function asssociated antigen-1. J Biol Chem 2000. 275:21877-21882.
  52. Yusuf-Makagiansar H, Makagiansar I, and Siahaan T. Inhibition of the adherence of T lymphocytes to epithelial cells by a cyclic peptide derived from inserted domain of lymphocyte function associated antigen-1. Inflammation 2001. 25:203-214.
  53. Yusuf-Makagiansar H and Siahaan T. Binding and internalization of an LFA-1 derived cyclic peptide by ICAM receptors on activated lymphocyte: a potential ligand for drug targeting to ICAM-1 expressing cells. Pharm Res 2001. 18:329-335.


 
Respond on this Journal Article!
Hint: Your Response should directly apply to {alpha}L integrin I domain cyclic peptide antagonist selectively inhibits T cell adhesion to pancreatic islet microvascular endothelium. Please check, if this context applies best to your contribution. Otherwise click HERE to change to the appropriate subject area. The actual subject area is Site-Specific Intervention.