DOD
Search
Discussions
Biomedical Jobmarket
News
DOD Alert
Edit DOD
 
ACCOUNT
Login
Register
Forgotten Password?
 
 
New Therapeutic Strategies for the Treatment of Type 2 Diabetes Mellitus Based on Incretins
 
Diabetes OD > Disease Management > T2DM > Metabolic Control > Anti-Hyperglycemic and Anti-Apoptotic Agents > Incretin Hormones > GLP-1 > Effectivity of GLP-1 in Therapy > Journal Article

(Journal Article): New Therapeutic Strategies for the Treatment of Type 2 Diabetes Mellitus Based on Incretins
 
Gallwitz B (Department of Medicine IV, Eberhard-Karls-University, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany, baptist.gallwitz(at)med.uni-tuebingen.de )
 
IN: Rev Diabetic Stud 2005; 2(2):61-69
Impact Factor(s) of Rev Diabetic Stud: 0.125 (2006)

Fulltext:    HTML  PDF

ABSTRACT: Orally ingested glucose leads to a greater insulin response compared to intravenously administered glucose leading to identical postprandial plasma glucose excursions, a phenomenon referred to as the "incretin effect". The incretin effect comprises up to 60% of the postprandial insulin secretion and is diminished in type 2 diabetes. One of the very important gastrointestinal hormones promoting this effect is glucagon-like peptide 1 (GLP-1). It only stimulates insulin secretion and normalizes blood glucose in humans under hyperglycemic conditions, therefore it does not cause hypoglycemia. Other important physiological actions of GLP-1 are the inhibition of glucagon secretion and gastric emptying. It further acts as a neurotransmitter in the hypothalamus stimulating satiety. In vitro and animal data demonstrated that GLP-1 increases β-cell mass by stimulating islet cell neogenesis and by inhibiting apoptosis of islets. In humans, the improvement of β-cell function can be indirectly observed from the increased insulin secretory capacity after GLP-1 infusions. GLP-1 represents an attractive therapeutic principle for type 2 diabetes. However, native GLP-1 is degraded rapidly upon exogenous administration and is therefore not feasible for routine therapy. The first long-acting GLP-1 analog ("incretin mimetic") Exenatide (Byetta®) has just been approved for type 2 diabetes therapy. Other compounds are being investigated in clinical trials (e.g. liraglutide®, CJC1131®). Dipeptidyl-peptidase IV inhibitors (DPP-IV inhibitors; e.g. Vildagliptin®, Sitagliptin®) that inhibit the enzyme responsible for incretin degradation are also under study.

TYPE OF PUBLICATION: Review

REFERENCES:

  1. Zunz E, La Barre J. Contributions a l’étude des variatins phy-siologiques de la sécrétion interne du pancréas: relations entre les sécrétions externe et interne du pancréas. Arch Int Physiol 1929. 31:20-44. [DOD]
  2. Creutzfeldt W. The incretin concept today. Diabetologia 1979. 16:75-85. [DOD]
  3. Creutzfeldt W. Entero-insular axis and diabetes mellitus. Horm Metab Res Suppl 1992. 26:13-18. [DOD]
  4. Meier JJ, Nauck MA, Schmidt WE, Gallwitz B. Gastric inhibitory polypeptide: the neglected incretin revisited. Regul Pept 2002. 107:1-13. [DOD]
  5. Nauck MA, Homberger E, Siegel EG, Allen RC, Eaton RP, Ebert R, Creutzfeldt W. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 1986. 63:492-498. [DOD]
  6. Brown J, Dryburgh, JR. A gastric inhibitory polypeptide II. The complete amino acid sequence. Can J Biochem 1971. 49:867-872. [DOD]
  7. Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 1987. 2:1300-1304.
  8. Holst JJ, Bersani M, Johnsen AH, Kofod H, Hartmann B, Orskov C. Proglucagon processing in porcine and human pan-creas. J Biol Chem 1994. 269:18827-18833. [DOD]
  9. Miyawaki K, Yamada Y, Yano H, Niwa H, Ban N, Ihara Y, Kubota A, Fujimoto S, Kajikawa M, Kuroe A, et al. Glu-cose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci U S A 1999. 96:14843-14847. [DOD]
  10. Scrocchi LA, Brown TJ, MaClusky N, Brubaker PL, Auerbach AB, Joyner AL, Drucker DJ. Glucose intolerance but normal satiety in mice with a null mutation in the gluca-gon-like peptide 1 receptor gene. Nat Med 1996. 2:1254-1258. [DOD]
  11. Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhi-bitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993. 91:301-307. [DOD]
  12. Meier JJ, Hucking K, Holst JJ, Deacon CF, Schmiegel WH, Nauck MA. Reduced insulinotropic effect of gastric in-hibitory polypeptide in first-degree relatives of patients with type 2 diabetes. Diabetes 2001. 50:2497-2504. [DOD]
  13. Gutniak M, Orskov C, Holst JJ, Ahren B, Efendic S. Anti-diabetogenic effect of glucagon-like peptide-1 (7-36)amide in normal subjects and patients with diabetes mellitus. N Engl J Med 1992. 326:1316-1322. [DOD]
  14. Nathan DM, Schreiber E, Fogel H, Mojsov S, Habener JF. Insulinotropic action of glucagonlike peptide-I-(7-37) in diabetic and nondiabetic subjects. Diabetes Care 1992. 15:270-276. [DOD]
  15. Nauck MA, Kleine N, Orskov C, Holst JJ, Willms B, Creutzfeldt W. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1993. 36:741-744. [DOD]
  16. Holst JJ. Glucagon-like peptide-1, a gastrointestinal hormone with a pharmaceutical potential. Curr Med Chem 1999. 6:1005-1017. [DOD]
  17. Vilsboll T, Krarup T, Madsbad S, Holst JJ. No reactive hy-poglycaemia in Type 2 diabetic patients after subcutaneous administration of GLP-1 and intravenous glucose. Diabet Med 2001. 18:144-149. [DOD]
  18. Matsuyama T, Komatsu R, Namba M, Watanabe N, Itoh H, Tarui S. Glucagon-like peptide-1 (7-36 amide): a potent glucagonostatic and insulinotropic hormone. Diabetes Res Clin Pract 1988. 5:281-284. [DOD]
  19. Meier JJ, Nauck MA. The potential role of glucagon-like peptide 1 in diabetes. Curr Opin Investig Drugs 2004. 5:402-410. [DOD]
  20. DeFronzo RA. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 1988. 37:667-687. [DOD]
  21. Nauck MA, Heimesaat MM, Behle K, Holst JJ, Nauck MS, Ritzel R, Hufner M, Schmiegel WH. Effects of gluca-gon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsu-linemic, stepped hypoglycemic clamp experiments in healthy volunteers. J Clin Endocrinol Metab 2002. 87:1239-1246. [DOD]
  22. Turton MD, O'Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, Choi SJ, Taylor GM, Heath MM, Lambert PD, et al. A role for glucagon-like peptide-1 in the central regula-tion of feeding. Nature 1996. 379:69-72. [DOD]
  23. Meier JJ, Gallwitz B, Salmen S, Goetze O, Holst JJ, Schmidt WE, Nauck MA. Normalization of glucose concen-trations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes. J Clin Endocrinol Metab 2003. 88:2719-2725. [DOD]
  24. Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 2002. 359:824-830. [DOD]
  25. Gutzwiller JP, Degen L, Matzinger D, Prestin S, Beglinger C. Interaction between GLP-1 and CCK-33 in in-hibiting food intake and appetite in men. Am J Physiol Regul In-tegr Comp Physiol 2004. 287:R562-567. [DOD]
  26. Gutzwiller JP, Degen L, Heuss L, Beglinger C. Glucagon-like peptide 1 (GLP-1) and eating. Physiol Behav 2004. 82:17-19. [DOD]
  27. Perfetti R, Hui H. The role of GLP-1 in the life and death of pancreatic beta cells. Horm Metab Res 2004. 36:804-810. [DOD]
  28. Brubaker PL, Drucker DJ. Minireview: Glucagon-like pep-tides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 2004. 145:2653-2659. [DOD]
  29. Drucker DJ. Glucagon-like peptides: regulators of cell prolif-eration, differentiation, and apoptosis. Mol Endocrinol 2003. 17:161-171. [DOD]
  30. Wang Q, Li L, Xu E, Wong V, Rhodes C, Brubaker PL. Glucagon-like peptide-1 regulates proliferation and apoptosis via activation of protein kinase B in pancreatic INS-1 beta cells. Diabetologia 2004. 47:478-487. [DOD]
  31. Fineman MS, Bicsak TA, Shen LZ, Taylor K, Gaines E, Varns A, Kim D, Baron AD. Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care 2003. 26:2370-2377. [DOD]
  32. Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, Bertolotto C, Di Mario U, Harlan DM, Perfetti R. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human is-lets. Endocrinology 2003. 144:5149-5158. [DOD]
  33. Nauck M, Stockmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Dia-betologia 1986. 29:46-52. [DOD]
  34. Vilsboll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced postprandial concentrations of intact biologically ac-tive glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 2001. 50:609-613. [DOD]
  35. Nauck MA, Sauerwald A, Ritzel R, Holst JJ, Schmiegel W. Influence of glucagon-like peptide 1 on fasting glycemia in type 2 diabetic patients treated with insulin after sulfonylurea secondary failure. Diabetes Care 1998. 21:1925-1931. [DOD]
  36. Nauck MA, Wollschlager D, Werner J, Holst JJ, Orskov C, Creutzfeldt W, Willms B. Effects of subcutaneous glucagon-like peptide 1 (GLP-1 [7-36 amide]) in patients with NIDDM. Diabetologia 1996. 39:1546-1553.
  37. Madsbad S, Schmitz O, Ranstam J, Jakobsen G, Matthews DR. Improved glycemic control with no weight in-crease in patients with type 2 diabetes after once-daily treat-ment with the long-acting glucagon-like peptide 1 analog liraglutide (NN2211): a 12-week, double-blind, randomized, controlled trial. Diabetes Care 2004. 27:1335-1342. [DOD]
  38. Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like pep-tide-1(7-36)amide, peptide histidine methionine and is respon-sible for their degradation in human serum. Eur J Biochem 1993. 214:829-835. [DOD]
  39. Deacon CF, Johnsen AH, Holst JJ. Degradation of gluca-gon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous me-tabolite in vivo. J Clin Endocrinol Metab 1995. 80:952-957.
  40. Meier JJ, Gallwitz B, Nauck MA. Glucagon-like peptide 1 and gastric inhibitory polypeptide: potential applications in type 2 diabetes mellitus. BioDrugs 2003. 17:93-102. [DOD]
  41. Joy SV, Rodgers PT, Scates AC. Incretin Mimetics as Emerging Treatments for Type 2 Diabetes (January). Ann Pharmacother 2004. [DOD]
  42. Baggio LL, Huang Q, Brown TJ, Drucker DJ. A recombi-nant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal mo-tility, and glucose homeostasis. Diabetes 2004. 53:2492-2500. [DOD]
  43. Nauck MA, Meier JJ. Glucagon-like peptide 1 and its deriva-tives in the treatment of diabetes. Regul Pept 2005. 128:135-148. [DOD]
  44. Goke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, Goke B. Exendin-4 is a high potency agonist and trun-cated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem 1993. 268:19650-19655. [DOD]
  45. Kolterman OG, Buse JB, Fineman MS, Gaines E, Heintz S, Bicsak TA, Taylor K, Kim D, Aisporna M, Wang Y, Baron AD. Synthetic exendin-4 (exenatide) significantly re-duces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab 2003. 88:3082-3089. [DOD]
  46. DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic con-trol and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 2005. 28:1092-1100. [DOD]
  47. Buse JB, Henry RR, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 2004. 27:2628-2635. [DOD]
  48. Kolterman OG, Kim DD, Shen L, Ruggles JA, Nielsen LL, Fineman MS, Baron AD. Pharmacokinetics, pharmaco-dynamics, and safety of exenatide in patients with type 2 diabe-tes mellitus. Am J Health Syst Pharm 2005. 62:173-181. [DOD]
  49. Kendall DM, Riddle MC, Rosenstock J, Zhuang D, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 2005. 28:1083-1091. [DOD]
  50. Mark M. NN-2211 Novo Nordisk. IDrugs 2003. 6:251-258. [DOD]
  51. Harder H, Nielsen L, Tu DT, Astrup A. The effect of liraglutide, a long-acting glucagon-like peptide 1 derivative, on glycemic control, body composition, and 24-h energy expendi-ture in patients with type 2 diabetes. Diabetes Care 2004. 27:1915-1921. [DOD]
  52. Bregenholt S, Moldrup A, Blume N, Karlsen AE, Nissen Friedrichsen B, Tornhave D, Knudsen LB, Petersen JS. The long-acting glucagon-like peptide-1 analogue, liraglutide, inhibits beta-cell apoptosis in vitro. Biochem Biophys Res Commun 2005. 330:577-584. [DOD]
  53. Sturis J, Gotfredsen CF, Romer J, Rolin B, Ribel U, Brand CL, Wilken M, Wassermann K, Deacon CF, Carr RD, Knudsen LB. GLP-1 derivative liraglutide in rats with beta-cell deficiencies: influence of metabolic state on beta-cell mass dynamics. Br J Pharmacol 2003. 140:123-132. [DOD]
  54. Gedulin BR, Nikoulina SE, Smith PA, Gedulin G, Nielsen LL, Baron AD, Parkes DG, Young AA. Exenatide (exendin-4) improves insulin sensitivity and {beta}-cell mass in insulin-resistant obese fa/fa Zucker rats independent of glycemia and body weight. Endocrinology 2005. 146:2069-2076. [DOD]
  55. Kim JG, Baggio LL, Bridon DP, Castaigne JP, Robitaille MF, Jette L, Benquet C, Drucker DJ. Development and characterization of a glucagon-like peptide 1-albumin conju-gate: the ability to activate the glucagon-like peptide 1 receptor in vivo. Diabetes 2003. 52:751-759. [DOD]
  56. Marguet D, Baggio L, Kobayashi T, Bernard AM, Pierres M, Nielsen PF, Ribel U, Watanabe T, Drucker DJ, Wagtmann N. Enhanced insulin secretion and improved glu-cose tolerance in mice lacking CD26. Proc Natl Acad Sci U S A 2000. 97:6874-6879. [DOD]
  57. Reimer MK, Holst JJ, Ahren B. Long-term inhibition of dipeptidyl peptidase IV improves glucose tolerance and pre-serves islet function in mice. Eur J Endocrinol 2002. 146:717-727. [DOD]
  58. Ahren B, Gomis R, Standl E, Mills D, Schweizer A. Twelve- and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with type 2 diabetes. Diabetes Care 2004. 27:2874-2880. [DOD]
  59. Ahren B. What mediates the benefits associated with dipepti-dyl peptidase-IV inhibition? Diabetologia 2005. 48:605-607. [DOD]
  60. Nauck MA, El-Ouaghlidi A. The therapeutic actions of DPP-IV inhibition are not mediated by glucagon-like peptide-1. Diabetologia 2005. 48:608-611. [DOD]
  61. Holst JJ, Deacon CF. Glucagon-like peptide-1 mediates the therapeutic actions of DPP-IV inhibitors. Diabetologia 2005. 48:612-615. [DOD]
  62. Filipsson K, Kvist-Reimer M, Ahren B. The neuropeptide pituitary adenylate cyclase-activating polypeptide and islet func-tion. Diabetes 2001. 50:1959-1969. [DOD]
  63. Akesson L, Ahren B, Manganiello VC, Holst LS, Edgren G, Degerman E. Dual effects of pituitary adenylate cyclase-activating polypeptide and isoproterenol on lipid metabolism and signaling in primary rat adipocytes. Endocrinology 2003. 144:5293-5299. [DOD]
  64. Villhauer EB, Brinkman JA, Naderi GB, Burkey BF, Dunning BE, Prasad K, Mangold BL, Russell ME, Hughes TE. 1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavail-able dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J Med Chem 2003. 46:2774-2789. [DOD]
  65. Deacon CF, Holst JJ. Dipeptidyl peptidase IV inhibition as an approach to the treatment and prevention of type 2 diabe-tes: a historical perspective. Biochem Biophys Res Commun 2002. 294:1-4. [DOD]
  66. Meier JJ, Gallwitz B, Schmidt WE, Nauck MA. Glucagon-like peptide 1 as a regulator of food intake and body weight: therapeutic perspectives. Eur J Pharmacol 2002. 440:269-279. [DOD]
  67. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM. Reduction in the inci-dence of type 2 diabetes with lifestyle intervention or met-formin. N Engl J Med 2002. 346:393-403. [DOD]


 
Respond on this Journal Article!
Hint: Your Response should directly apply to New Therapeutic Strategies for the Treatment of Type 2 Diabetes Mellitus Based on Incretins. Please check, if this context applies best to your contribution. Otherwise click HERE to change to the appropriate subject area. The actual subject area is Effectivity of GLP-1 in Therapy.