DOD
Search
Discussions
Biomedical Jobmarket
News
DOD Alert
Edit DOD
 
ACCOUNT
Login
Register
Forgotten Password?
 
 
Adenovirus-mediated XIAP gene transfer reverses the negative effects of immunosuppressive drugs on insulin secretion and cell viability of isolated human islets.
 
Diabetes OD > Regeneration of Islets > Transplantation > Islet Cells > Immunosuppression > Complications > Reduced Cell Viability > Inhibition of Reduced Cell Viability > XIAP > Journal Article

(Journal Article): Adenovirus-mediated XIAP gene transfer reverses the negative effects of immunosuppressive drugs on insulin secretion and cell viability of isolated human islets.
 
Hui H, Khoury N, Zhao X, Balkir L, D’Amico E, Bullotta A, Nguyen ED, Gambotto A, Perfetti R (Division of Endocrinology & Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, 8723 Alden Dr., SSB #290, Los Angeles, CA 90048, USA)
 
IN: Diabetes 2005; 54:424–433.-
Impact Factor(s) of Diabetes: 8.848 (2004), 8.298 (2003), 8.256 (2002), 7.7 (2001)

Fulltext:    HTML  PDF

ABSTRACT: Immunosuppressive drugs are routinely used to provide tolerance after whole pancreas and islet cell transplantations. While they are essential in inhibiting graft rejection, little is known about their effect on islet function and beta-cell viability. In this study, we report that tacrolimus, sirolimus, and mycophenolic acid, when added to cultures of freshly isolated human islets, induce a downregulation of the synthesis and secretion of insulin. These functional changes are associated with decreased islet cell viability. All three agents induce a decrease of intracellular levels of Bcl-2 and Bcl-xL, with an increased level of Smac, indicating that they are capable of promoting a downregulation of anti-apoptotic factors and an accumulation of pro-apoptotic mediators. Transduction of islet cells with the anti-apoptotic gene XIAP prevents the negative effects of these drugs on the function and viability of islets. XIAP-infected cells show a higher expression of phospho-CREB (cAMP-responsive element binding protein) and a reduced level of Smac, resulting in a significant reduction of apoptotic cells and a preservation of the glucose-dependent secretion of insulin. In conclusion, the present study demonstrates that genetically modified human islets expressing XIAP are resistant to the negative effects of immunosuppressive drugs on insulin secretion and cell viability.

TYPE OF PUBLICATION: Original article

Articles citing this article:



 
Respond on this Journal Article!
Hint: Your Response should directly apply to Adenovirus-mediated XIAP gene transfer reverses the negative effects of immunosuppressive drugs on insulin secretion and cell viability of isolated human islets.. Please check, if this context applies best to your contribution. Otherwise click HERE to change to the appropriate subject area. The actual subject area is XIAP.